Quantum Control Architecture -- Bridging the Gap between Quantum Software and Hardware

  报告时间: 2019年10月14日(周一) 上午 10:00—12:00

  报告地点: 计算所 446室

  主 讲 人 :付祥 (国防科技大学 助理研究员)

  报告摘要:

  Quantum computers promise to solve problems intractable by classical computers. Different to the von-Neumman architecture used by classical computers, (most) quantum computers adopt the process-in-memory paradigm, where quantum bits (qubits) are the place both for processing and storage. Due to the heterogeneity between quantum storage & processing (in quantum states) and quantum control (with classical analog signals), a quantum computer requires a dedicated control system apart from the quantum processor allocating qubits.

  Addressing the flexibility and scalability issues of the quantum control system as observed in experiments, we proposed an executable quantum instruction set architecture (QISA), named eQASM, which can be supported by our proposed QuMA-series control microarchitecture. eQASM/QuMA can support the widely-used "classical control, quantum data" paradigm, and is highlighted by a quantum-classical hybrid programming model, configurable QISA at compile time, comprehensive program flow control, precise timing control, etc.

  Driven by the difficulties of using current quantum programming languages and compilers to generate eQASM code, we started developing a quantum programming language targeting near-term devices (named Qingo) in collaboration with multiple universities/institutes such as Peng Cheng Lab. Before ending this talk, I will give a short introduction to Qingo with its compiler, which will be open-source around Jan. 2020.

  主讲人简介:

  Xiang Fu is an assistant professor in Quantum Computing Lab, Institute for Quantum Information and State Key Laboratory of High-Performance Computing (HPCL), National University of Defense Technology (NUDT), Changsha, Hunan, China. He got his bachelor's degree from the Department of Electronic Engineering at Tsinghua University in 2011, and master's degree from College of Computer, NUDT in 2013. He started doctoral research on quantum control (micro)architecture at QuTech, Delft University of Technology in 2014 and got his Ph.D. in 2018. He is honored by the best paper award of MICRO 2017 and Top Picks 2017. His current research interest include quantum computer architecture, and quantum programming language and compiling.

附件:
菲律宾申博开户888msc 欢乐城平台 菲律宾申博开户888msc 中原娱乐场平台注册 88赌城2级会员
金脉娱乐开户送钱 太阳城亚洲娱乐怎样赢 澳门太阳城主页 金沙真人美女 博狗游戏现金网
大西洋千万彩金大派送 博彩技巧 财富娱乐扣扣61166 现金网大全 澳门银河在线开户
皇冠娱乐平台登入 澳门博彩排名网站 申博在线游戏登入 澳门银河最新网址 伟德游戏规则